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Helical Filters

9.1 INTRODUCTION

In the VHF range, high-selectivity filters cannot be
realized by conventional techniques. All filters require
certain minimum values for the quality factor of their
resonant circuits. At frequencies above 30 Mc, high-
quality lumped elements, inductances, and capaci-
tances do not exist. The piezoelectric crystal resonator,
although of high quality, is not very flexible in
realization of filters with wide bandwidths. Finally,
the coaxial resonator cannot be used in the VHF range
because of its large size. However, in the UHF
range the cavity resonator (shown in Fig. 9.1) with
tuning adjustment and coupling loops is very useful.
The toroidal inductor is not generally used at
frequencies above 30 Mc because of its high distributed
capacitance. The single-layer solenoid can be used to a
degree, but the maximum Q realizable is about 200.
Also, in filter applications the coils must be isolated
from each other, requiring the use of shields, which,
when placed in close proximity to the coils, reduces
their Q. The quality factor can be improved by
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Fig. 9.1. Coaxial cavity for use in UHF filtering.

increasing the size of the solenoid, but the resulting
filter is unproportionally large in comparison with the
size of other components used in modern circuitry.

The piezoelectric crystal, although of high Q and
small size, becomes impractical at higher frequencies.
It is practically impossible to construct crystals whose
fundamental frequency is above approximately 35 Mc
since their physical dimensions become so small that
good quality crystals cannot be produced. Harmonic
crystals are generally utilized at frequencies above
30 Mc. The crystal is a high-quality device, but it has
certain performance weaknesses, such as an unpre-
dictable amount of spurious modes above the funda-
mental frequency (or any harmonic frequency), which
discourages its use except for very low-percentage
bandwidths (below 19%). These shortcomings reduce
its value for use in filter construction. Any attempt to
create wideband crystal filters meets unsurpassable
difficulties because of the necessity to include lossy
spreading coils, which reduce the obtainable band-
width from its maximum value. A crystal filter is
basically a very-narrow-bandpass element.

For a long time, the filter-design engineer has looked
for a new type of resonator which could be used to
produce selective, lowloss filters in the VHF domain.
Coaxial lines with helical inner conductors have been
used in traveling-wave tubes, parametric amplifiers,
high-Q resonators, high characteristic-impedance
transmission lines, low-frequency antenna designs, and
in impedance-matching techniques for frequencies as
low as 300kc. The use of helical resonators for
filtering in the VHF-UHF range will be discussed in
this chapter.

9.2 HELICAL RESONATORS

Helical resonators of practical size and form factor
and with high Q (of theorder of 1000)canbeconstructed
for the VHF and UHF ranges. Basically they resemble
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500 Helical Filters

a coaxial quarter-wave resonator, except that the
inner conductor is in the form of a single-layer
solenoid, or helix. The helix is enclosed in a highly
conductive shield of either circular or square cross-
section. One lead of the helical winding is connected
directly to the shield and the other end is open
circuited.

As an example of space saving and a superior form
factor, consider a coaxial resonator at 54 Mc with an
unloaded Q of 550. The coaxial resonator would be
4.5 ft long by 0.7 in. in diameter. The same quality
helical resonator would be 2in. long by 1.5in. in
diameter.

Figure 9.2 is a sketch of the resonator with a
circular cross-section. With these notations, the
following set of equations can be given:

L = 0.025n2d?[1 — d/D?] uH per axialinch (9.2.1)
where

L = the equivalent inductance of the resonator in
uH per axial inch.

d = the mean diameter of the turns in inches.
D = the inside diameter of the shield in inches.
n = 1/r = turns per inch, where 7 is the pitch of

the winding in inches. 9.2.2)
Empirically for an air dielectric,
0.75 -
= —————— uuF per axialinch  (9.2.3)
logyo (D/d)
D
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Fig. 9.2. Helical resonator with circular cross section.

This equation is valid only for the following
condition,

=15 (9.2.4)

[SURES

where b is the axial length of the coil in inches.

These equations and all those below are accurate
for the resonator when it is realized between the
following limits:

b
1L.0< = <40
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T d

0.5<@<0.7até=4.0
T d
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where d, is the diameter of the conductor in inches.
The axial length of the coil is approximately

equivalent to a quarter wavelength. This actual length
is much shorter than the free-space length, which is
given by the expression,

A_ o

4 4,
where c is the speed of light in free-space and f; is the
operating frequency in megacycles per second. The
actual length of the coil in inches can be expressed by
the following equation:

(9.2.5)

b= 250
fu/IC

where f, is the resonant frequency in megacycles per
second.

This expression is based on theoretical considera-
tions, but a working equation can be formulated with
the help of the following expression.

27 rad _ 1000
2mJIC — JIC 9.2.7)

Because of the fringe effect and self capacitance of
the coil, the electrical length of the coil is approxi-
mately 69 less than a quarter wavelength. The
empirical value of b is reduced by 69 and is given
below.

(9.2.6)

wave velocity v = fyd =

0944 02350 235

b =—
4 fo  fWLC

(9.2.8)



The number of turns per inch is obtained by
substituting Egs. 9.2.1 and 9.2.3 into Eq. 9.2.8.

_ 1720[ logyo (D/d)]’”‘
fobdL1 — (d/D)*
The total number of turns N is given by
1720 [mg10 (D/d)] “
foD(d/D)L1 — (d/Dy’

The characteristic impedance of the resonator is
expressed by

L . D%
Z, = 1oooA/—= 183nd| (1 — —) lo —} ohms
0 C h [( D glod

L =n turns per inch  (9.2.9)
-

turns (9.2.10)

9.2.11)
d = 0.55 and-lZ = 1.5, then N = 1900 turns
D d foD
9.2.12)
and
Z,= 28000 ohms (9.2.13)

0

If the shield is of square cross section, the following
equations are applicable:

S = length of one side of the square ~ D/1.2

(9.2.14)
0= 60S\/ o (9.2.15)
_ 1600 (9.2.16)
foS
n =1 1600 (9.2.17)
T S 0
81500
7, = 9.2.18
°=1s ( )
d = 0.66S for% = 0.55 (9.2.19)
b= Sfor-g =15 (9.2.20)
H =1.6S (9.2.21)

Figure 9.3 shows a nomogram constructed from
Egs. 9.2.14 to 9.2.21. This nomogram is to be used
for helical resonators in shields of a square cross
section, the resonator that physically lends itself best
to filter design.

Quality Factor

The helical resonator has solved the problem of
high-quality resonators in the VHF range. In a
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reasonable volume, they provide a tuned circuit whose
Q is higher than the normal lumped circuit. Possible
causes of dissipation in the resonator are losses in the
conductor, in the shield, and in the dielectric. The Q
of a resonator is defined by

energy stored

=27
Q fpower dissipated

(9.2.22)
Losses in the helical resonator include the actual loss
in the helix, a copper loss as influenced by the skin
and the proximity effects. There is also an additional
loss owing to currents in the shield. The resistance
of the coil can be expressed as

R " A$VS
° 12,000d,
or,
0083 ¢ , = L
e =———"n ohms per axialinch (9.2.23
1000 nd, my/f ohms p (0.2.23)

An additional resistance due to the shield is given by

_9.37n*b%(d[2)* /1724
' b[D¥b + d)/8]*

X A/ﬁ x 107 ohms per axial inch
Peu

(9.2.24)
The unloaded Q of a resonaft line is given by
Q.= L (9.2.25)
2

If R, and R, are assumed in series, the Q of the reso-
nant line is expressed as

0, = 2xf,L

= 9.2.26
R+ R, (9:2.26)

In this form, the dielectric losses are neglected. For
a resonator with a copper coil and copper shield,
Egs. 9.2.23 and 9.2.24 can be substituted into Eq.
9.2.26 and the final expression for the unloaded Q is

— 3
0. = 220 /D) = (@/D)
1.5 + (d/D)?
Q. ~ 50D./f, = 605/,
The simplified equation is accurate to +10% and is
derived with three practical limitations; when

0.45 < % < 0.6, §> 1.0 and d,> 56

D\/fy (9.227)

(9.2.28)

where ¢ is the skin depth.
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Fig. 9.3. Nomogram for helical resonators in shields of square cross section.

For copper conductors,

-3
5= 260)(10 inch

Jh

To show how important the volume of the resonator
is, the @, as a function of volume is

(9.2.29)

0, = 50/ Vol \/f, (9.2.30)

when

04<— d <06and1<3<3

Figure 9.4 illustrates how rapidly the unloaded Q
decreases as a function of d/ D and how important it is
to keep this ratio between the specified limits.

If the condition d, > 56 is not fulfilled, the Q of the
resonator will be lower than that predicted by Eq.

9.2.28. Fordy/r = 0.5, the wire diameter d, is given by

dDf,

d, =
°™ 3,800

inches (9.2.31)

In a given space, d, can only be increased if the
number of turns is reduced. This means that the
inductance must be reduced. Thus for a fixed fre-
quency, the capacitance must be increased.

Measurement of Resonator Q

The problem of finding the unloaded Q of the
resonator is not easy. Many methods have been
proposed but most have been inconvenient or imprac-
tical. However, the unloaded Q can be estimated
quite accurately from the loaded Q and the insertion
loss. This relation between the insertion loss and Q



when generator and load impedances are equal, is

Lgp = 201og u
U

(9.2.32)

where

U= Qunloaded
Qminimum

In this case, Qmin is the loaded Q determined from
the relation

Jo
BWsap

Qmin =

where BW, 45 is the measured 3-dB bandwidth. When
loop coupling is used into and out of the resonator, the
insertion loss, and hence Qmin, Will be a function of
the coupling between loops and the losses in the loop
circuits. It is desirable to use very loose coupling in
order that the effect of coupling between loops may
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Fig. 9.4. Unloaded Q of the helical resonator.
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be neglected. Figure 9.5 gives a plot of Eq. 9.2.32.
The insertion loss is measured by the substitution
method when all coaxial cables are as short as possible.
The value of unloaded Q is evaluated by multiplying
the value of Q,;, by the value of U which corresponds
to the measured insertion loss. If the insertion loss
of the resonator is greater than 25 dB, the correction
factor for the unloaded Q will be 1.05 or less. At this
condition, Q,,;, will only be in error of Q,, by 5%
and it is self evident that Q,,; could be calculated from

fo
B w3 dB

Physical Construction of Resonator

To obtain the predicted unloaded Q, several points
for construction of the resonator should be remem-
bered. The shield can be cylindrical, rectangular, or
any other shape, but for simplicity of calculations,
only the shields of circular and square cross sections
have been considered. Any seams in the shield
parallel to the coil axis should have good physical and
electrical connection. Dip-brazed cans have been used
extensively. If the coil end is run to the bottom cover
of the shield, the cover must be solidly connected to
the shield to reduce the losses and ensure the high-
quality factor of the resonator. This connection may
be done best by soldering, but in actual practice, the
use of screws every few inches is permissible.

The length of the shield must be extended beyond
the coil on each side by approximately one-quarter
of the shield diameter, or for a square shield, by
approximately 0.3 times the side of the square. If the
coil were carried to the bottom of the resonator can
without having this clearance, the lower few turns
would be ineffective for storage of energy but would
still contribute loss. The clearance at the top of the
resonator is to reduce capacitive loading. Actually,
the resonator could be built without top and bottom
covers, since they have little effect upon the frequency
and Q. However, the external field is greatly reduced
by the use of these covers.

At the open end of the helix a high voltage exists.
The coil should end smoothly, without sharp edges,
and should not turn into or out of the helix. The coil
form supporting the helix must be made of a low-loss
material; otherwise, the quality factor of the resonator
will be degraded seriously. Polystyrene rods have been
used for this application in many helical filter designs.
This material is known for its low-dissipation factor,
making it electrically suitable. Two mechanical
properties of polystyrene, however, limit its usefulness.
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Fig. 9.5. General curve for insertion loss.

First, the softening temperature of polystyrene is
relatively low, approximately 82°C. At this tem-
perature distortion of the material occurs. Second,
the coefficient of expansion of polystyrene is rather
high, and special provisions must be made to achieve
a filter which is temperature stable.

Temperature Compensation in Helical Filters

In variable temperature conditions, most of the
components used for selective devices and coupling
networks, exhibit appreciable change in losses as well
as electrical values. For example, the quality factor
of a coil decreases as the temperature increases, and the
value of inductance usually increases with the tem-
perature increase. Capacitors, such as the silver mica
type also exhibit a similar effect, with a positive tem-
perature coefficient.

Experience proves that temperature compensating
devices only solve part of the problem, that of
stabilizing resonant frequencies, since their presence
in the circuit may deteriorate the quality factor of the
original network. This is especially true in high-
quality, high-frequency filters, where the midband
insertion loss is increased due to their use. Since their
loss factor is temperature dependent, filters employing
temperature-compensating capacitors will still exhibit
a varying insertion loss with temperature.

In the helical resonator filter, the polystyrene form
on which the coil is wound expands with increasing
temperature. This expansion is greater than the
expansion of the wire itself, and also greater than the
cavity expansion. The expansion of the form tends to
force the coil to increase in diameter, and lowers the
center frequency of the filter. By using the coil form

of Fig. 9.6, this problem is almost entirely eliminated.
Here, four slits running down the form absorb the
expansion of the material, and the perimeter of the
form will not change. Experiments have shown that
the most sensitive part of the helix is the upper,
unconnected end. It has been found that only
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Fig. 9.6. Coil form used for helical resonator with temperature
compensating feature.



approximately 60 9, of the total length of the coil form
need be slotted to absorb the variation.

When insertion loss variation is critical, the change
can be completely cancelled by use of resistive pads
with temperature-sensitive resistors. The pads may
be of the L or = variety using one or more sensistors,
the temperature-sensitive element, along with regular
carbon resistors.

9.3 FILTER WITH HELICAL RESONATORS

To develop a filter, it is first necessary to consider
the required attenuation requirements, paying partic-
ular attention to the filters relative bandwidth, and its
relationship to the minimum quality factor of the
resonators necessary to realize the design.

For a given set of specifications, the value of the
unloaded Q must exceed a certain Qmin for that filter
to be realizable. Figure 9.7 shows the relationship
between the required gmin [@min = gmin(fo/Af)] for a
Butterworth and three different Chebyshev filters.

o771 T T T T T T 1
min=unloaded @ for which loss is co
Larger @ is necessary to
35 |— obtain reasonable results —
% = relative bandwidth Chebyshev
0
30— —
3-dB ripple
25— —
Sle
£ B |
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"c 1-dB ripple
E
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15— —
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0.3-dB ripple
5H ]
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Number of resonators

Fig. 9.7. Relative minimum unloaded Q for Butterworth and
Chebyshev filters.
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Example 1

A seven-pole filter (seven resonators) possessing a
Butterworth response requires a gmin of 4.6. For a
Chebyshev response with a 1-dBripple in the passband,
gmin = 21.9. If Qum were equal to Qmin, the insertion
loss would be infinite. It is self evident that the
unloaded Q must exceed Qmin.

For this example, assuming a 1% bandwidth, Qmin
equals 460 for the Butterworth filter and 2190 for the
Chebyshev. It must be remembered that if com-
ponents whose unloaded Q is barely equal to Qmin
are used, the response can be achieved, provided
certain predistorted values of coupling coefficients are
used, but an extremely large value of insertion loss will
result.

When the unloaded Q is greater than Qmin, the loss
of the filter does not primarily depend on the number
of sections, but is exclusively controlled by the ratio
U, given in Eq. 9.2.32. Once the minimum value of
unloaded Q is obtained, and the quality factor of
available components is determined, the loss in the
filter is almost completely defined and varies very little
with the shape of the filter, the number of sections,
the bandwidth, etc.

Fubini and Guillemin give a curve which shows the
minimum insertion loss at midband of Butterworth
filters plotted as a function of the ratio U. The
following two conclusions can be made:

(1) For moderate losses, the curves are very close to
each other.

(2) The curves for one- and two-section filters are
exactly the same and are expressed by Eq. 9.2.32.

From the previous Example 1, of a seven-pole
Butterworth filter, assume the available unloaded Q
of each section is 3000. The value of U can be
computed as follows:

Qunm _ 3000

From Eq. 9.2.32 or Fig. 9.5,
6.52
L=20 1og,5—§2 =20 x 0.072 = 1.44 dB

As mentioned before, this equation is only valid for
one and two sections. For the example with seven
resonators, a correction factor must be used. Figure
9.8 plots this correction factor and shows that the loss
is always greater as the number of sections is increased.

Since the number of sections is seven, the correction
factor is 1.27 and the actual insertion loss at midband
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willbe  p _144x127=1834B

It should be stated that this method of insertion loss
is approximate, due to the empirical correction factor
used. An exact method of calculation will be given
later.

For a realizable Chebyshev filter, gmin is always
higher than that of a Butterworth filter and may be
found from Fig. 9.7. For the same unloaded Q and
bandwidth, the insertion loss of a Chebyshev filter will
be several times higher than that of a Butterworth
filter.

Example 2

If the available unloaded Q is 5000 and the relative
bandwidth is 19, the insertion loss for a four-pole
Butterworth filter will be 0.53 dB. For a Chebyshev
filter with four poles (3-dB ripple) the expected
insertion loss will be 2.67 dB. If the Q factor is only
3000, the former will result in 0.898 dB loss and the
latter will exhibit 4.95 dB insertion loss. If the Q is
2000 the corresponding insertion losses will be 1.38 dB
and 8.8 dB respectively.

Filter Construction

As previously stated, the only reason for using
helical resonators is to reduce the size of the filter and
to provide a low insertion loss in the passband. The
design of a filter for a Butterworth and Chebyshev
response is straightforward, and the evaluation of
their circuit elements is well known. More interesting,
however, are the equivalent schematics and the
mechanical realization of the filter.

Even after carefully calculating the number of turns,
and all dimensions of the resonator, it is very possible
that the resonant frequency may be in error by as
much as 10%;. This must be adjusted without any

distortion to the other dimensions so that the predicted
Q will be obtained. This adjustment is made by using
a tuning screw at the top of the helix. In the equivalent
schematic the screw, because it is connected to ground,
has the effect of providing capacitive loading for the
helix.

Coupling into the Filter

The problem to be considered here is most impor-
tant, namely, coupling into and out of the helical
resonator filter. There are three methods of achieving
this coupling: loop, probe, and tap coupling.

For loop coupling, a loop of approximately one turn
is placed around the first helix. The loop is usually
positioned slightly below the helix, in a plane perpen-
dicular to the helix axis. The distance between the
coupling loop and helix can be adjusted until a proper
match is achieved between the filter and its load. The
use of the loop generally yields relatively low imped-
ance coupling and features a dc short to ground.

Loop coupling, although rather simple to use, has
disadvantages. First, positioning of the loop so that
the desired coupling requirements are satisfied is
difficult. Second, supporting the loop so that shock
and vibration requirements are satisfied is also difficult.

Next to be considered is probe coupling, in which a
probe is placed close to the upper part of the helix.
In this manner, no dc path is provided, and the
coupling is mostly capacitive. A high impedance
match can be achieved, and may be adjusted by varying
the depth of penetration of the probe into the helical
cavity.

The use of tap coupling has been found to be the
most practical. This type of coupling has production
advantages, as well as offering the necessary stability
in order to satisfy shock and vibration specifications.
A dc path is provided with tap coupling. The
approximate position of the tap may be calculated,
and the exact position then experimentally determined
in the laboratory. Figure 9.9 shows how the tap is
made.

The doubly loaded Q of the input and the output
resonators are equal for the large Q case and given by

PP | So
Qd_Ql_Qn_quBwadB

9.3.1)
where

n = the number of resonators in the filter
; = the doubly loaded QO

¢, = normalized quality factor given in tables of
3-dB down k and ¢ values in Chapter 6.



Fig. 9.9. Tap coupling.

For the Butterworth response, the list below may be
referred to:

No. of Resonators @

1.414
1.000
0.766
0.618
0.518
0.445

NV A WN

Applying transmission line theory, the following
equation may be obtained.

(9.3.2)

which is divided equally between the generator and
the second resonator when tapping the input coil.
When tapping the output coil, R,/Z, is divided equally
between the load and the (» — 1) resonator.

Also from resonant line theory,

sin 6 J R, Rusp
where 0 is the electrical angle from the voltage standing
wave minimum point (here, the helix ground). The

tap is then placed N6/90° turns from the grounded end
of the helix.

(9.3.3)
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Example 3

A helical filter exhibiting Butterworth characteristics
is to be placed between the source impedance of 50
ohms and a load whose impedance is 1000 ohms. It
is a four-section filter with a 2.5% bandwidth. Each
resonator has 71.5 turns and has an unloaded Q of 300.
The characteristic impedance of each resonator is
3630 ohms. Using Egs. 9.3.1, 9.3.2 and 9.3.3:

=1 0.766—1-— = 15.32
2 0.025

Ro "(L — l) = 0.04865
1532 300

Z,

For the 50-ohm source,

sin = /0.02433 0 _ 0.0183
3630

6 = 1.05°
tap = 11—59):)% = 0.83 turns from grounded end
For the 1000-ohm load,
sin 6 = 0.0819
6 = 4.70°

Tap = 3.73 turns from the grounded end.

For all three types of end coupling (that is, loop,
probe, and tap), fine adjustment of the coupling from
the outside of the filter is difficult. To add some
flexibility to the filter, a form of fine coupling adjust-
ment is often desirable. Coupling adjustment may be
achieved by connecting a variable capacitor between
the ground end of the helix and ground as in Fig. 9.10.
Tap coupling is calculated as above for the approxi-
mate location of the tap. If the variable capacitor is
large, the coupling will be unaffected, as if no capacitor
were used, and the ground end of the resonator
grounded. As the capacitance is decreased, the
coupling into the resonator is decreased. This con-
tinues until no power is coupled in, which occurs when

J

"
- —— —
n

F---

Fig. 9.10. Fine adjustment of tap coupling.
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that portion of the helix below the tap and the
capacitor is at series resonance. As the series capacitor
is decreased further, coupling begins to increase. The
fundamental frequency of the helix will shift slightly
because of the supplementary capacitance, but the
shift can be eliminated by the conventional method of
tuning the helix.

This modification is especially useful for limited
production, where the tap cannot be preset exactly and
is of particular advantage when the source and load
impedances are not known precisely. A dc short does
not exist in this configuration.

Coupling Between Resonators

The coupling of helical resonators is considered the
most complicated problem in the realization of a
specific filter design. The problem arises because of
the difficulty encountered in the mathematical analysis
of the coupling.

Figure 9.11 defines the dimension 4 to be that part
of one helix exposed to the adjacent helix. The shield
may be either open at the bottom or the top of the
resonator. The shield is made of the same material
as the can and is solidly connected to the sides and
top of the can (dip-brazed, or soldered). The dimen-
sion /4 determines the amount of coupling between
resonators. The problem of accurately determining
the dimension # for helical filters of all practical sizes
and frequencies have not yet been solved. However,
measurements taken on a coupling test block (Fig.
9.12) have yielded data that may be extended for use
at frequencies in the 30-Mc range, with S ~ 1.25.

The test block is actually a two resonator filter,
featuring a replaceable shield. The parameters
necessary to calculate the coupling was measured,

Shield
/
7 Ve
~ 0.3S
===
—| <>
- r —
— — |
~ 0.3S
v
S

Fig. 9.11. Position of coupling shield between resonators.

[ Shield
Cap L,
probe
b d4—1— Helix
Input
(tap)
== ==

;
l

Fig. 9.12. Coupling test block.

and the results were plotted (Fig. 9.13). With this
test block, the shield thickness was g,-inch. Most
filters are made with J%-inch thick shields. To obtain
h for J-inch material, multiply the value of 4 obtained
from the curve by 1.075.

The curve of Fig. 9.13 has been reduced to

h

1.91
K x 107 = 0.071(;) (9.3.4)

Use of this design method will yield results accurate
to within approximately 6 %.
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Fig. 9.13. Coupling between resonators as a function of A/d.
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Fig. 9.14. 540-Mc bandpass helical filter with variable coupling feature.

Openings at the upper part of the resonator yield
mostly capacitive coupling, and more attenuation
is obtained on the lower side of the passband.
Openings in the lower part of the partitions provide
mostly inductive coupling, and the filter will exhibit
more attenuation on the high-frequency side of the
response curve.

When using capacitive coupling, a fine coupling
adjustment can be obtained by using a screw inserted
through the top of the can in line with the shield.
Figure 9.14 shows a 540-Mc filter using this arrange-
ment.

Determination of the Number of Resonators

Given any design problem, the first step is to
determine the number of resonators necessary to
fulfill the rejection requirement. The attenuation
curves of Chapter 3 may be reviewed, or for Butter-
worth or Chebyshev filters, the nomographs of Figs.
5.1 and 5.2 may be used.

Example 4

A bandpass filter is required with the following

specifications:
fo =30Mc

BW;4s =1 Mc
BW;0 45 = 4 Mc
It is desired that the response shape be Butterworth.

Using the attenuation curve for Butterworth filters
in Chapter 3, and keeping in mind

it can be seen by using four resonators, 48 dB is
obtained at the frequency where 50-dB rejection is
required. Going to five resonators, 60 dB is obtained.

Determination of Required Unloaded Q

To determine the size of the resonators required
for the filter, we must first find the value of unloaded
Q necessary to fulfill the insertion loss requirement.
The method given earlier, in Examples 1 and 2, is only
approximate. An exact method will be given here,
making use of the quantities:

0, = the unloaded Q required
Qy = the loaded Q = f;,/BW; 45

QO = Qu/ QL

¢1, 9, = the normalized Q of the first and
last resonators

Kis* * * k(n_1)(ny = the normalized coupling coefficients

The equations for insertion loss given in Table 9.1 are
exact for any type response. The equations of Table
9.2 are for very low-loss Butterworth responses. For
low-insertion losses, the higher order terms can be
neglected.

Example 5

What unloaded Q is needed for a four-pole Butter-
worth filter with a 1 dB insertion loss, and a 3-dB
bandwidth of 15 Mc at a center frequency of 500 Mc?

SOLUTION
262 341 262
IL = 2010 [ +——+——+1]
Q° Q" Qo
for Q,, neglecting the Q,® term yields
Qo = 22.7
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Table 9.1 Insertion Loss Equations for Any Type Response

Vg, 1 1
n=2 IL=20log [—Z—/"‘(—Q— + —)]
12 0

=3 IL =201 + k
" o8 [k12k23 0,2 anO #

Gnly [ 1 (kag? + kgs®) kzsz]}
=4 IL =201 -— + + —
" 8 {kl2k23k84 Q° ‘InQ02 Q gn
n=5 IL=20lo { Vaults [1 b Gt ke ) ' R 2]:
- - & kyokasksskas| Qo' 92Q0® (0 42Qo BT
Inla [ 1 1 (kos® + kas® + kas® + kse®)
=6 IL =201 + +
" %8 {k12k23k34k45k56 0’ 9.9 o7
+ (kos® + kg + kygd)  (kosPkse® + Kog®kys® + kaykse?) + k%2k452:|}
an02 Q0 qn
Vaulgs 1 1 (kag® + ka® + kas® + kig® + kord)
9l [ 23 3 45 56 67
=17 IL =20log \+———"—| =5 +
§ o8 {k12k23k34k45k50k67 0° 9.0 !
+ (kog® + kss® + kos® + kse®) + (koskse® + kog’ker® + koskas® + KasPhss® + ksi’ker® + kusPher?)
ano3 QO2
2 2 2
(kza kst + k;s gsos + kas’kse?) + keszkaszsz:l}
Then As mentioned before, if Q, = Q... an infinite
fo midband insertion loss will result. If Q, is only
Q,=0:0,= BW, 5 9, slightly larger than Q,,,, the resulting filter will have
0, =756 sds a high value of insertion loss, and the 3-dB bandwidth
* of the resulting filter will be narrower than the design
Predistorted k and ¢ Values bandwidth. Only when
The values of k and g given for the infinite ¢ case in 0.~ 100,
Chapter 6 can be used provided or using Dishal’s notation
fo _ Jo
Q.2 (BwsdB)Qmm = Qmin Qur~ (BwadB)Qz,a,...,(n—l)

Table 9.2 Insertion Loss Equations for Low-Loss Butterworth Responses

1.414
2 IL =20log 0 +1
0

n=
n=3 IL=2010g( )
262 341 262
n=4 IL=2010g Q +1
0
324 523 523 324
n=35 IL=201g Q — +1
0
6 IL 20lg(384 742 911+743+384 q
n = =
Q3 2  Q
4.46 100 14.5 14.6 100 4.46
n=17 IL=201g( Q‘ Q" Q +Q 1)
0 0




will the resulting bandwidth be equal to the design
bandwidth.

For the low Q case, when Q, < 100, , the
predistorted k and g values given should be used in
order to realize the design bandwidth.

This can be summarized as follows: If @, > 100, .,
use the infinite Q values of k and ¢q. If @, < 100,
use the predistorted values. It should be mentioned,
for the high-Q case, an insertion loss of 1 dB or less
will result. For the low-Q case, the insertion loss of
the network is given in the tables, having been defined
as

1L=1010gM=101ogﬁ

Pout R, 9.3.5)

Vout

where
Yia

p outmax =

It should be noticed that for most of the predistorted
cases, the values of ¢, and ¢, are different, and the
input and output resonators should be tapped in differ-
ent points, for the helical filter to be loaded properly.

Example 6
A filter is required with the following specifications:
fo=30Mc
BW; 45, = 0.9 Mc
BW;o 4 = 4.5 Mc
V4

in

= Z,,, = 50 ohms
Insertion loss: 3 dB maximum

Maximum dimensions of filter: 63 in. by 13 in. by
2%in.

Response: Butterworth

SOLUTION

1. Determine the number of resonators. Using Fig.
5.1, with Amax = 3dB, 4,,;, = 50dB, and Q = 4.5/0.9
= 5.0, we see that between three and four resonators
will be required for realization. We must use four
resonators.

We could also have used the curve of the Butter-
worth attenuation characteristics of Chapter 3, to find
that a three-pole would only provide 42 dB at the
50-dB point, but the four-pole network satisfies the
requirement with 56 dB.

2. Calculate the Q that can be obtained. Since we
are using four resonators, five metal thicknesses must
be subtracted from the maximum length. For / in.
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walls, this results in approximately 6 in. remaining
for four resonators. Each resonator will have

S =6/4=15in.
Then, B
Q, = 60S\/f, = 492.9

3. Determine if the high-Q case can be realized.
For a four-pole Butterworth, g,,;, = 2.6

30
= 26— = 86.6
Omin 0.90

Since Q, < 10Q,,;,, we cannot use the high-Q case
and obtain the exact bandwidth.

4. Determine predistorted k and ¢ values and
insertion loss. Using the table of 3-dB down k and ¢
values for the Butterworth response, with n = 4, and
calculating

BW, dB) 0.9
=[——)0=—"-490 = 14.7
90 ( N 0 30

We could use the k¥ and ¢ values associated with
9o = 13.066, the closest value to the calculated g,.
It is also possible to plot the values given in the table,
as done in Fig. 9.15. Here, the abscissa is

1

dy=—

do

For our example d, = 0.068, and using the curves of
Fig. 9.15 we find

g, = 0.533
qs = 1.642
ks = 1.076
ko = 0.554
ks = 0.680

IL = 1.9 dB, satisfying the insertion-loss require-
ment.

5. Computer run (optional). To check the resulting
filter, element values can be determined and the filter
run on a digital computer to check bandwidth,
rejection, and insertion loss. The lumped repre-
sentation of the helical filter is shown in Fig. 9.16.
Figure 9.17 is the computed response.

At the 50-dB rejection points, on the low side
59 dB is achieved, and on the high side the attenuation
is 52 dB. The 3-dB bandwidth is 0.9 Mc, as required.
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Fig. 9.15. 3-dB down k and ¢ values for Butterworth filter
with n = 4.

The computed insertion gain is 3.14 dB. The
voltage gain due to the impedance step-up is

Your _ [Zout _ 755
Vin Z

in

through 9.2.21.
N = 1600 = 35.5 turns
0
n= 16200 = 23.7 turns per in.
5%

Zy = 81,500 _ 1811.1 ohms
JfoS

0

d = 0.66S = 0.99 in.
b=S=15in.
H = 1.6S = 2.4in.

dy = 1_ 0.0210 in., which corresponds to
" No. 24 copper wire.

7. Compute the shield heights. The dimensions of
the coupling shields will now be calculated. We have
previously found

ki, = 1.076

kys = 0.554

kgq = 0.680
Now

K=k M

fo

K =30x 103

and

Ky, =323 x 1073

Koy =16.6 x 107°

Kg =204 x 1072
From Fig. 9.13,

This corresponds to 4.88 dB gain. Since the filter’s hys
actual insertion gain is 3.14 dB, the insertion loss not i 0.66
considering the impedance step-up is 1.74 dB. This I
checks closely with the 1.9-dB insertion loss obtained -2 — 0.46
previously, and satisfies the specification of the filter. d
6. Compute the resonator dimensions. The nec- hsy _ 052
essary design quantities are obtained from Eqs. 9.2.16 d '
33490 0.9085 pF 0.4678 pF 05742 pF
W I 1 |
C"g = 1uH { 1uH T lwH = 1uH g 103179
27.24 pF 26.77 pF 27.10 pF 27.57 pF

Fig. 9.16. Lumped representation of helical filter of Example 6.
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A, dB

30
F. Mc

Fig. 9.17. Computed response of network of Fig. 9.16.

We have calculated d = 0.99 inches. Therefore,

h12 = 0.653 in.
hay = 0.455 in.
h34 = 0.515 in.

We will use £, in. thick material for the shields. As
mentioned earlier, the correction factor is 1.075. So,

hy, = 0.702 in.
h23 = 0.489 in.
hs, = 0.554 in.

This is the opening between adjacent helices, and may
be at the top or bottom of the resonator.

8. Calculate the input and output tap. We must
determine the position of the input and output tap to
match a 50-ohm source and load. We have obtained
and calculated the following information.

g1 = 0.533
q4 = 1.642
0. = 490

Z, = 1811.1 ohms
N = 35.5 turns

Using Eqgs. 9.3.1, 9.3.2, and 9.3.3 for the input coil,

Jo
= 8.9

Q= 1q, BW,an

R 3(1 - i) = 0.0866

Z, 4\Qq4 u

sing =,/ R Ruap _ 0346
2Zy Zo
0 = 1.98°

0

tap = lo = (.78 turn from ground.

For the output coil the resulting tap position is
approximately 0.44 turn from ground.

9. Determine the final outside dimensions of the
can. Finally, the dimensions of the can, considering
s in. thick metal thickness is

Length = 4S5 4+ (5 X %) = 6.313in.
Width = S + (2 x &) = 1.625in.
Height = H + (2 x #) = 2.525in.
10. Tuning the filter. The necessary design infor-
mation has now been obtained. Tuning of the filter is

accomplished by use of a sweep generator, to be
described in Section 9.4.

9.4 ALIGNMENT OF HELICAL FILTERS

When a filter is designed and constructed to the best
of the engineering ability, the next very important
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problem is to adjust to the specific response or
“tuning up”. The method described is known as
Dishal’s method. Filter constants can always be
reduced to only three fundamental types:

1. f—the resonant frequency of each resonator

2. d; = 1/Q,—the decrement of the ith resonator,
defined as the fractional bandwidth between the 3-dB
down points, when the resonator is considered
separately

3. K;;4+1—the coefficient of coupling between the
ith and the (i + 1)th resonator. Here, K1) =

(Af/ﬁ))ki(ﬂl)-

All of the required values for K and Q are given for an
n-resonant circuit filter that will produce the response

)=+ G

where V, is the voltage output at the peak of the
response curve in the passband.

Most selective circuit designs incorporate a trimming
adjustment for setting the resonant frequency of each
resonator, such as a tuning screw for the helical
resonator filter. The coefficient of coupling between
adjacent resonators may be variable, and a method is
given for easily adjusting the exact desired value.

In this tuning method, the filter is completely
assembled, and attention is concentrated on amplitude
phenomena occurring in the first resonator of the
filter at the desired resonant frequency. The alignment

procedure will be described using the four-resonator
bandpass configuration shown in Fig. 9.18. The
procedure is applicable to all coupled-resonant circuit
filters, whether they be low frequency, high-frequency,
VHF, microwave-frequency or even waveguide filters.
The steps of the procedure are as follows:

1. Connect the generator to the first resonator of
the filter and the load to the last resonator of the filter
in exactly the same manner as they will be connected
in actual use.

2. Couple a nonresonant detector directly and very
loosely to either the electric or the magnetic field of
the first resonator of the filter. A nonresonant
detector may be said to be “very loosely” coupled
when it lowers the unloaded Q of the resonator by less
than 5%,.

3. Completely detune all resonators. A resonator
is sufficiently detuned when its resonant frequency is
at least 10 passband widths away from passband
midfrequency.

4. Set the generator frequency to the desired mid-
frequency of the filter.

5. Tune resonator 1 for maximum output indication
on the detector. Lock the tuning adjustment.

6. Tune resonator 2 for minimum output indication
on the detector. Lock the tuning adjustment.

7. Tune resonator 3 for maximum output and lock
the tuning adjustment.

8. Tune resonator 4 for minimum output and lock
the tuning adjustment.

Detector K.u (_Kfa_) (_I_(f"_)
SL Y L H L H Y -
l
i ——

Fig. 9.18. Four-pole conventional helical network used to illustrate alignment procedure.
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Fig. 9.19. Reproductions of oscillograms of the amplitude

frequency phenomenon occurring in resonator 1 as alignment
steps are performed.

The alignment of the filter is now complete. Figure
9.19 shows the amplitude-frequency phenomena
occurring in resonator 1 as the alignment steps are
performed. They may be observed on an oscilloscope,
as the filter is swept. It should be realized that since
the alignment adjustments depend exclusively on the
amplitude of the response at f,, a sweep-frequency
generator is not required, and all adjustments can
be made with a single-frequency input, f;.

Figure 9.19a is the oscillogram produced when
resonator 2 is detuned or short circuited, and the input
resonator 1 is adjusted for a maximum signal at f,.
Figure 9.19b6 occurs when the second resonator is
tuned for minimum amplitude at f,. The third reso-
nator is detuned. Figures 9.19c and 9.194 show
the continuation of the procedure as detected in
resonator 1.

It can be seen that when the ith resonator is tuned,
there will be i peaks and i — 1 valleys produced in
resonator 1. It should be remembered that if it is
impossible to completely detune all resonators, a
single device may be used to short circuit the resonator
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immediately following the one being tuned. This
short must be effective at the frequency involved.

Measurement of Coupling

The fundamental procedure is based upon the
consideration that every pair of adjacent resonators is
a double-tuned—that is, a two-pole circuit (with all
the other resonators completely detuned). In a
double-tuned circuit with @ 4 and Qp equal to infinity,
the fractional bandwidth between primary response
peaks is exactly equal to the coefficient of coupling
between resonators 4 and B. This direct relationship
makes this phenomena an excellent one to use as the
basis of an experimental procedure for adjusting of
coefficient coupling to a desired value.

When the unloaded Q of the resonators are very
high, but Q is not infinity, the curve of Fig. 9.20
supplies a way of finding the exact coupling between
adjacent resonators. To determine the amount of
coupling between adjacent resonators, the following
steps must be taken:

1. Designate as A the lower Q resonator and B the
higher Q resonator.

2. Couple a nosiresonant signal generator directly
and very loosely to either the electric or magnetic
field of resonator 4.

3. Couple a nonresonant detector directly and
loosely to either the electric or magnetic field of
resonator 4.

4. Completely detune all the resonators in the filter.

5. Tune resonator 4 for maximum output from the
detector. Record the signal generator input and the
detector output.

6. Tune resonator B for minimum output from the
detector (as in alignment procedure in the previous
section). Increase the signal generator input to pro-
duce the same output obtained in Step 5 (see Fig. 9.21).

7. The ratio of the signal generator input in Step 6
to that in Step 5 is the abscissa in Fig. 9.20. From
the ordinate of this graph, read the ratio of coupling
K between resonators 4 and B to the percentage
bandwidth Af,/f, between the amplitude peaks that
are now present across resonator A.

8. Carefully measure the bandwidth Af, between
the response peaks of resonator 4.

9. The exact coefficient of coupling is equal to the
fractional bandwidth between these peaks time the
ordinate value obtained in Step 7.

For the low-Q case, in a double-tuned circuit with
Q4 and Qg only two or three times the fractional
bandwidth, the coefficient of coupling required in the
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K/ /fo),

| | | | ]

(Vaa/Vap) dB

Fig. 9.20. Method of finding exact coefficient of coupling K between two resonators, when the K required is much greater than the

unloaded decrements.

network to produce desirable response shapes are not
much greater than the unloaded decrements. The
resulting peak to valley ratio will not be very great
when the previous procedure is used, and the peaks
will not be sharply defined. For this case, the
coefficient of coupling can be found in terms of
the measured Q of the resonators being used.

In order to determine the amount of coupling
between adjacent resonators for the low-Q case, the
following steps must be taken:

(Repeat steps 1 through 6, as for the high Q case.)

7. The ratio of signal generator input of Step 6 to
that in Step 5 is the abscissa of the graph of Fig. 9.22.
From the ordinate of this graph read the ratio of the
coefficient of the coupling K, to the geometric mean
of the decrement of the resonators 4 and B.

8. Carefully measure the Q of each resonator A
and B by measuring the 3-dB bandwidth. See Eq.
9.4.7 and related discussion.

9. The exact coefficient of coupling is equal to the

K
>
] g
A ]
Vaa == B:: 1 Short

| i
_o-d

(a)

geometric mean of 4 and B decrement times the
ordinate value in Step 7.

Adjustment of Coupling in a Helical Filter

It is often desirable to be able to set or to check each
coefficient of coupling of a filter without going through
the procedure of converting into a double-tuned
circuit. This can be accomplished by measurements
made entirely in the input resonator.

There are, in practice, two cases which must be
considered. In the first case, the unloaded Q’s of the
resonators being used are very much greater than
the fractional midfrequency f,/BW, 4y, being used—
that is, the unloaded individual Q’s are essentially
infinite. In the second case, the unloaded Qs of the
resonators are only four, or five, or fewer times
Jo/BW, g

For the first case above, which is the most common
case in helical filtering, the K’s can be approximately
measured, in consecutive order, by measuring the

Afy

Y
i 1

<1

M

fo
(b) (0

Fig. 9.21. Procedure for obtaining coefficient of coupling K between two resonators when the K required is much greater than the
unloaded decrement. (a) Resonate circuit 4 for maximum V,, (B shorted). (b) Resonate circuit B for minimum ¥, (short removed).

(c) Bandwidth between primary peaks of V,s.
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Fig. 9.22. Method of obtaining exact coefficient of coupling K
between two resonators when the K required is not much greater
than the unloaded decrements.

bandwidth between the various response peaks
appearing in resonator 1, as each of the following
resonators is resonated in consecutive order. If the
unloaded Q’s are approximately 100 times f,/BWj 45,
then this procedure gives exact answers. It should
be remembered that there will be i response peaks

(kug® + kog® + kai®) £ V(kae® + kag® + kai)? — 4(kyoks,)?
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For the third resonator,

AfP )a 2 2 Afp
—2 )~ (k k =0
(BwadB (e ko) BW;4s

yields two solutions:

Af, =0

and
Af, = Vkig? + kag? BW, g (9.4.4)
This indicates that three peaks are obtained, one at f,,
and a lower and higher peak separated by the distance

Af,.

For the fourth resonator,

A 4
(o) = s+ st b

Af, )2 2
—_— kisks) = 0
X (BwadB + (kizksy)

again yields two solutions:

Afp = BW3dB(

occurring in the input resonator, when the ith
resonator is correctly tuned.

The first step is to be sure that the input resonator
is correctly loaded by adjusting the position of the
tap. The 3-dB bandwidth of the response of the first

resonator is given by
BWiap

U1
when the following resonator is shorted. Here, the

value of ¢, is obtained from the tables of 3 dB down
k and g values of Chapter 6, and BW; 4 is the desired
filter bandwidth.

Next, in tuning the completed filter, we must
calculate the frequencies of the peaks obtained as the
filter is tuned resonator by resonator. This is done by
using Eqgs. 9.4.2 through 9.4.5. The values of k, are
obtained from the tables of Chapter 6, and BW, 45 is
again the desired filter 3-dB bandwidth.

The resulting Af,, is the distance between amplitude
response peaks occurring in the first resonator, and
by adding to and subtracting from f, the quantities
Af,[2, the absolute frequencies of the peaks are
obtained.

In setting the first resonator,

Af,=0 (9.4.2)
Here, one peak occurring at f; is obtained and the
3-dB bandwidth is given by Eq. 9.4.1. For the second

resonator,
€ Af, = k1sBWq 4 (9.4.3)

Azgp = 9.4.1)

. )A (9.4.5)

Here, four peaks are obtained; the larger value of
Af, is the distance between the outer pair, the smaller
value of Af, is the distance between the inner pair.

With Eqgs. 9.4.2 through 9.4.5, filters up to and
including seven poles may be completely tuned. This
is done by first working from input to output and then
turning the filter around, working from output
to input. Figure 9.23 lists values of normalized
Af,/BW3q4p for the Butterworth response shape for
2-, 3-, 4-, 5-, 6-, and 7-pole filters, as well as values of
1/g, = Az 4/BWj 4p for the purpose of adjusting the
input and output tap.

For the second case described—that is, where the
unloaded Q is only four or five times fo/BWj 45, the
coefficients of coupling should be set or measured in
consecutive order as follows: Accurately measure the
Q of each resonator in the filter, then precede step by
step, through the alignment procedure, accurately
measuring and recording the magnitudes of the
maxima and minima produced.

The ratio of the detector output obtained when
resonator 1 is alone resonated to that obtained when
resonator / is resonated is given by

(&) = 1 + p122

1,i

1 + pag? (9.4.6)
1 + P

1 + pu-ni®
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Number of resonators 2

Tuning resonator

no. 1, and setting Azgp

tap. = 0.707
BW3gp

A3dp

1.000 1.305 1618 1931 2.247

Tuning resonator
no. 2, and setting
K;» Afp

BW3ap

= 0.707

0.707 0.840 1.000 1170 1.340

Tuning resonator

no. 3, and setting
Kos I

BW3gp

1.000 1.000 1.144 1.318 1.498

Tuning resonator A
no. 4, and setting _)I l‘_ Afp2 fp1 _

K3y BW3gp N

Af; p2

BW3gp

1.154 1.182 1.342 1.518

0.612 0.470 0.452 0.466

Fig. 9.23. Normalized Af, and A,,p for Butterworth filters.

where p,® = K;,20,0,, and so on, and

K, = A—fklz
fo

Since we know the desired value of K, and have

measured each @, we can calculate the required

V1.4/V1,; ratio from Eq. 9.4.6, and compare to the

measured value. The most trustworthy method of

making accurate loaded or unloaded Q measurements

on a resonator that is part of the filter chain seems to
be as follows:

1. Completely assemble the filter.

2. Completely detune all resonators except the one
to be measured. Obviously complete detuning of the
resonator on each side of the one being measured
should be satisfactory.

3. A nonresonant signal generator is coupled
directly and very loosely to either the electrical or
magnetic field of the resonator.

4. A nonresonant detector is coupled very loosely
and preferably to the field opposite to that being used
for the generator. In other words, make sure that
there is negligible direct coupling between generator
and detector.

5. Using an unmodulated wave, or an amplitude-
modulated wave checked for negligible frequency

modulation from the signal generator, measure the
frequency difference Af, between the points that are
V,/V, down from the peak response. The resonator

Q is given by
0-£ J -1 oo

When high Q’s are to be measured, the setup must
be capable of measuring very small-percentage
bandwidths.

Sweep Display Setups

Figure 9.24 illustrates a typical sweep display setup
for viewing the transmission characteristics of a VHF
filter. To view the impedance. characteristics of the
filter, the block diagram of Fig. 9.25 can be used.
Finally, Fig. 9.26 shows a setup for tuning the filter
by means of a small probe placed in the first resonant
cavity. The signal from this probe must be approxi-
mately 20-dB down, in order not to load down the
first resonator.

9.5 EXAMPLES OF HELICAL FILTERING

The filter of Fig. 9.14 is a 540-Mc helical filter
which is tuned in order to provide an equiripple group
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Center freq. Sideband
marker marker
generator generator
50-ohm load \
Swee,
out Pro Scope
Detector\@) ]
[} o—]
H |4 14 H
Sweep generator ¢ o 1 O
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Fig. 9.24. Typical sweep display setup of transmission
characteristics of a filter at VHF.

delay. The can of Fig. 9.27 is used for two filters, with
center frequencies at 28 and 32 Mc. The length is
approximately 4 inches. The filters have 3-dB band-
widths of 1.5 Mc and an insertion loss of 1.4 dB was
obtained. The coils have approximately 65 turns.
Tap coupling was used for the input and output coils,
providing an impedance of 75 ohms. One unusual
specification for these filters was that at 30 Mc,
29 dB 4 0.5 dB was to be provided for both filters.

When a high value of attenuation is needed at
frequencies near 3f;, the helical filter must be followed
by a lowpass LC filter, since helical filters have a
secondary or spurious response at this frequency.
Figure 9.28 shows a VHF helical filter-lowpass
combination. A minimum attenuation of 60-dB is
achieved at frequencies up to 6.6 times f;.

The design shown in Fig. 9.29 is actually two filters
in one case. The helical section is a 30-Mc bandpass
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Fig. 9.25. Typical sweep display setup of impedance charac-
teristic of a filter at VHF.
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Fig. 9.26. Typical sweep display setup of amplitude phenom-
ena in first cavity for VHF filters.

filter with a 3-dB bandwidth of 330 kc, and the filter
mounted on the vertical printed circuit board is a
1 Mc wide LC filter at the same center frequency.
Both filters are tuned to provide a Gaussian response.
This design is unusual because of the small physical
size (1 x 1.5 x 2inches), made possible with the
square layout of the helical resonators.

Use of Helical Filters in Parametric Multipliers

For frequency multipliers, a varactor diode is
usually inserted between bandpass filters. The first
filter is designed for the fundamental signal to be
multiplied, and the output filter is designed for the
specific harmonic in which the fundamental frequency
is transformed by the parametric diode. The entire
network from input to output is still considered as a
filter, because the nonlinear diode is absorbed by the
adjacent elements in such a fashion that the low-
frequency filter presents an appropriate load, and to
the harmonic filter, the diode represents a nonlinear
capacitor providing a source of harmonic frequencies
with high impedance.
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Fig. 9.27. Four resonator 28- and 32-Mc filter.
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Fig. 9.29. 30-Mc helical and LC filter.
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Fig. 9.30. Schematic diagram of 63 Mc x 6 = 378 Mc parametric multiplier.

The whole assembly can be designed in such a way
that no spurious modes from the varactor will be
passed through the high-frequency portion of the
network. The fundamental frequency filter, in many
cases can be a conventional LC network. The output
from the varactor is connected to the input tap of
the helical resonator filter. A schematic diagram of
such a parametric multiplier is shown in Fig. 9.30.
To eliminate unwanted outputs, the helical filter
consists of several cavities. The high-quality helical

filter adds only a negligible amount of loss to the
multiplier network, in comparison to a conventional
LC filter. A narrow passband is usually used since
any noise in the initial stage of the harmonic multiplier
or synthesizer is very damaging for the following
stages at microwave frequencies. This arrangement
with helical filters will cover the entire VHF and
UHF bands, providing the cleanest harmonic output
and the cleanest source of the above mentioned
frequencies.



